ĐKXĐ: \(-2x+6\ge0\Leftrightarrow-2x\ge-6\Leftrightarrow x\le3\)
Ta có: \(\sqrt{-2x+6}=x-1\)
\(\Leftrightarrow-2x+6=\left(x-1\right)^2\)
\(\Leftrightarrow-2x+6=x^2-2x+1\)
\(\Leftrightarrow-2x+6-x^2+2x-1=0\)
\(\Leftrightarrow-x^2+5=0\)
\(\Leftrightarrow x^2=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}\left(nhận\right)\\x=-\sqrt{5}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\sqrt{5};-\sqrt{5}\right\}\)