Biết nghiệm thuộc khoảng(\(\frac{\pi}{2};\frac{3\pi}{2}\) )của phương trình\(\sin x-cosx=\sqrt{2}sin2x\) là\(k\pi\) . Khi đó \(6k=......\). (nhập kết quả dưới dạng số thập phân thu gọn)
Biết nghiệm thuộc khoảng(\(\frac{\pi}{2};\frac{3\pi}{2}\) )của phương trình\(\sin x-cosx=\sqrt{2}sin2x\) là\(k\pi\) . Khi đó \(6k=......\). (nhập kết quả dưới dạng số thập phân thu gọn)
1. Chứng minh rằng: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
2. Chứng minh biểu thức sau không phụ thuộc \(x\): \(A=sin\left(\frac{\pi}{4}+x\right)-cos\left(\frac{\pi}{4}-x\right)\), nếu \(cosx=\frac{1}{2}\) với \(\frac{3\pi}{2}< x< 2\pi\)
Chứng minh đẳng thức sau :
1) \(sin^2\left(\frac{\pi}{8}+x\right)-sin^2\left(\frac{\pi}{8}-x\right)=\frac{\sqrt{2}}{2}sin2x\)
2) \(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=tanx\)
cho điểm M trên đường tròn lượng giác gooasc A gắn với hệ trục tọa độ Oxy Nếu sđ \(\stackrel\frown{AM}\) =\(\frac{\pi}{2}+k\pi\) k\(\in Z\)thì sin(\(\frac{\pi}{2}+k\pi\)) bằng
1,giá trị lớn nhất cảu biểu thức là:
a, A= sin2x+ 2cosx+1
c, B= cos2x- 2sinx -3
2, kết quả thu gọn của các biểu thức là:
a, A= \(\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosx}}}\) ( 0<x< \(\frac{\pi}{2}\))
b, B= \(\sqrt{2+\sqrt{2+\sqrt{2+2cosa}}}\) ( 0<x< \(\frac{\pi}{2}\))
Rút gọn các biểu thức sau:
1) \(A=2cosx+3cosx\left(\pi-x\right)-sin\left(\frac{7\pi}{2}-x\right)+tan\left(\frac{3\pi}{2}-x\right)\)
2) \(B=2sin\left(\frac{\pi}{2}+x\right)+sin\left(5\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)\)
1. Thu gọn biểu thức sau A=sin4x+sin2x.cos2x
2. Tính giá trị của biểu thức \(A=2sin\dfrac{\pi}{6}+3cos\dfrac{\pi}{3}+tan\dfrac{\pi}{4}\)
3. Tính các giá trị lượng giác của \(\alpha\) biết: \(sin\alpha=\dfrac{12}{13};\left(0< \alpha< \dfrac{\alpha}{2}\right)\)
4. Tính giá trị của biểu thức sau: \(A=sinx+cosx.tanx\), nếu \(cosx=\dfrac{1}{2}\) với \(\dfrac{3\pi}{2}< x< 2\pi\)
1, cho sin α -cos α = \(\sqrt{2}\) . giá trị của sin 2α bằng?
2, cho sin α + cos α= \(\sqrt{2}\) , giá trị của sin 2α bằng?
3, cho sin α = \(-\frac{\sqrt{3}}{2}\) và \(\frac{3\pi}{2}< \alpha< 2\pi\) .tính cos \(\left(\alpha+\frac{\pi}{3}\right)\)
chứng minh Q ko phụ thuộc vào x
P= sin2x + sin2\(\left(\frac{2\pi}{3}+x\right)\) + sin2 \(\left(\frac{2\pi}{3}-x\right)\)
help me
Cho sin a = \(\dfrac{1}{\sqrt{3}}\) với 0 < a < \(\dfrac{\pi}{2}\) , khi đó giá trị \(\cos\left(a+\dfrac{\pi}{3}\right)\) bằng ?