Ta có:
\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\) và \(\sqrt{3}\)
Nhân \(\sqrt{2}\) vào 2 vế ta có:
VT=\(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)
VP=\(\sqrt{12}\)
Xét VT ta có:
\(VT=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)
=\(\sqrt{7}+1-\left(\sqrt{7}-1\right)\)=1+1=2
Xét VP có:
\(\sqrt{12}=2\sqrt{3}\)
\(\Leftrightarrow VT< VP\) hay \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}< \sqrt{12}\)