Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Trà My

So sánh:

S= \(\frac{1}{\sqrt{1.1998}}+\frac{1}{\sqrt{2.1997}}+...+\frac{1}{\sqrt{k.\left(1998-k+1\right)}}+...+\frac{1}{\sqrt{1.\left(1998-1\right)}}\)và 2.\(\frac{1998}{1999}\).

Giúp mình với.. mình cảm ơn.

Lê Thị Thục Hiền
5 tháng 9 2019 lúc 23:19

Sửa đề : \(S=\frac{1}{\sqrt{1.1998}}+\frac{1}{\sqrt{2.1997}}+...+\frac{1}{\sqrt{k\left(1998-k+1\right)}}+...+\frac{1}{\sqrt{1998.1}}\)

Tổng S có số số hạng là :(1998-1):1+1=1998(số)

Áp dụng bđt cosi vs hai số dương có

\(\sqrt{1.1998}\le\frac{1+1998}{2}=\frac{1999}{2}\)

\(\frac{1}{\sqrt{1.1998}}\ge\frac{2}{1999}\)

Tương tự cx có \(\frac{1}{\sqrt{2.1997}}\ge\frac{2}{1999}\)

..............

\(\frac{1}{\sqrt{k\left(1998-k+1\right)}}\ge\frac{2}{1999}\)

................

\(\frac{1}{\sqrt{1998.1}}\ge\frac{2}{1999}\)

=> \(S\ge\frac{2}{1999}+\frac{2}{1999}+...+\frac{2}{1998}\)

<=> \(S\ge2.\frac{1998}{1999}\)


Các câu hỏi tương tự
Phạm Băng Băng
Xem chi tiết
fghj
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Khởi My
Xem chi tiết
Hoàng Trần Trà My
Xem chi tiết
Anh Mai
Xem chi tiết
Vân
Xem chi tiết
Anh Minh
Xem chi tiết
Tdq_S.Coups
Xem chi tiết