So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
mọi người giúp em bài này với,em đang cần gấp ạ
bài 2:rút gọn các biểu thức sau
a)A=\(\sqrt{5-\sqrt{21}}+\sqrt{5+\sqrt{21}}\)
b)B=\(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
c)C=\(\left(1+\frac{11-\sqrt{11}}{1-\sqrt{11}}\right)\left(\frac{11+\sqrt{11}}{1+\sqrt{11}}+1\right)\)
d)D=\(\frac{\sqrt{2}}{\sqrt{2}-\sqrt{3}}-\frac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}\)
e)E=\(\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
Tính giá trị của biểu thức \(P=x^3+y^3-3\left(x+y\right)+2009\)
trong đó: \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
\(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)
1. So sánh:
a. \(\sqrt{18}+\sqrt{19}\) và 9
b. \(\frac{16}{\sqrt{2}}\)và \(\sqrt{5}.\sqrt{25}\)
2. Cho Hđt \(\sqrt{a\pm\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\pm\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)vs \(\left(a,b>0,a^2-b>0\right)\)
Áp dụng kết quả để rút gọn:
a. \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
b. \(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
c. \(\sqrt{\frac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}}:\frac{2}{\sqrt{3}-1}\)
Tính giá trị của biểu thức: \(B=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)+20\sqrt{2}-2332017\) , biết: \(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}},y=\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\)
Đưa biểu thức trong căn về dạng hình phương của một tổng hoặc một hiệu:
f/ \(\sqrt{8-2\sqrt{15}+}\sqrt{4-2\sqrt{3}}\)
g/ \(\sqrt{42-10\sqrt{17}+\sqrt{33-8\sqrt{17}}}\)
h/ \(\sqrt{12-2\sqrt{35}}+\sqrt{7-2\sqrt{10}}-\sqrt{49}\)
i/ \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-\sqrt{3-\sqrt{5}}\)
l/ \(\sqrt{11+4\sqrt{6}}-\sqrt{9-4\sqrt{2}}\)
Cho hđt:
\(\sqrt{a\pm\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\pm\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\) (a,b>0 và \(a^2-b>0\))
Áp dụng kq để rút gọn:
\(a.\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
b. \(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
c. \(\sqrt{\frac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}}:\frac{2}{\sqrt{3}-1}\)
a. P=\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}+\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
b.P= (\(\frac{2}{\sqrt{3}-1}-\frac{52}{3\sqrt{3}-1}+\frac{12}{3-\sqrt{3}}\)) ( 5+\(\sqrt{27}\))
c. P= (\(\frac{2+\sqrt{2}}{\sqrt{2}+1}+1\))(\(\frac{2-\sqrt{2}}{\sqrt{2}-1}-1\))
d. P=\(\sqrt{9+\sqrt{17}}-\sqrt{9-\sqrt{17}}-\sqrt{2}\)
đ. P=(2+\(\sqrt{4+\sqrt{6+2\sqrt{5}}}\) )(\(\sqrt{10}-\sqrt{2}\) )
e. P= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
ê. P= \(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)
g. G= \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
h. H=\(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}\)
i. I= \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)