Ta có :
\(\dfrac{1}{A}=\dfrac{2^{20}-3}{2^{18}-3}=\dfrac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\dfrac{9}{2^{18}-3}\left(1\right)\)
\(\dfrac{1}{B}=\dfrac{2^{22}-3}{2^{20}-3}=\dfrac{2^2.\left(2^{20}-3\right)+9}{2^{20}-3}=4+\dfrac{9}{2^{20}-3}\left(2\right)\)
Từ (1) và (2) ta có \(\dfrac{1}{A}>\dfrac{1}{B}\Leftrightarrow A< B\)