So sánh : \(\dfrac{\sqrt{5}+1}{5\sqrt{10-2\sqrt{5}}}\) và \(\dfrac{\sqrt{3}}{6}\)
bài 1 So sánh
a) 1 và \(\sqrt{3}-1\)
b) 2\(\sqrt{31}\) và 10
c) \(\sqrt{15}-1\) và \(\sqrt{10}\)
So sánh các số \(\sqrt{\dfrac{10}{17}}và\dfrac{3}{4}\)
so sánh
\(a.3\sqrt{26}\) và 15
\(b.-5\sqrt{35}\) và 30
c.\(\sqrt{34-10\sqrt{3}}\) và 5-\(\sqrt{3}\)
d.\(\sqrt{16+225}\) và \(\sqrt{16}+\sqrt{225}\)
so sánh
\(\sqrt{3\sqrt{3}}\) và \(\sqrt{3}+1\)
Bài 3:Cho biểu thức B=\(\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right)\).\(\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)(với a>0 và a khác 1)
a)rút gọn B
b)Đặt C=B.(\(a-\sqrt{a}+1\)).So sánh C và 1
so sánh
\(\sqrt{1+\sqrt{2+\sqrt{3}}}\) với 2
So sánh A và B biết :
\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
\(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)
So sánh(không dùng bảng số hay máy tính cầm tay)
a)\(\dfrac{1}{7}\sqrt{51}\) với \(\dfrac{1}{9}\sqrt{150}\)
b)\(\sqrt{2017}-\sqrt{2016}\) với \(\sqrt{2016}-\sqrt{2015}\)