\(8A=\dfrac{8^{2022}+16}{8^{2022}+2}=1+\dfrac{14}{8^{2022}+2}\)
\(8B=\dfrac{8^{2024}+16}{8^{2024}+2}=1+\dfrac{14}{8^{2024}+2}\)
Vì \(\dfrac{14}{8^{2022}+2}>\dfrac{14}{8^{2024}+2}\)
=> 8A>8B
=> A>B
\(8A=\dfrac{8^{2022}+16}{8^{2022}+2}=1+\dfrac{14}{8^{2022}+2}\)
\(8B=\dfrac{8^{2024}+16}{8^{2024}+2}=1+\dfrac{14}{8^{2024}+2}\)
Vì \(\dfrac{14}{8^{2022}+2}>\dfrac{14}{8^{2024}+2}\)
=> 8A>8B
=> A>B
Cho \(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2022}\)
Và \(B = \dfrac{2021}{1}+\dfrac{2020}{2}+\dfrac{2019}{3}+...+\dfrac{1}{2021}\)
Tính B/A
So sánh :
\(A=\dfrac{10^8+2}{10^8-1}\) và \(B=\dfrac{10^8}{10^8-3}\)
B = \(\dfrac{5}{2}\)+\(\dfrac{6}{11}\)+\(\dfrac{3}{8}\)+\(\dfrac{7}{2}\)+\(\dfrac{6}{8}\)+\(\dfrac{5}{11}\)
tính nhanh
So sánh \(A=\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{21^2}\)và \(\dfrac{-3}{-8}\)
Tính nhanh
\(\dfrac{-8}{15}.\dfrac{4}{11}-\dfrac{8}{11}:\dfrac{15}{2}+\dfrac{-8}{11}.\dfrac{3}{5}\)
Bài 2: Thực hiện phép tính một cách hợp lí
f) \(\dfrac{7}{19}\) . \(\dfrac{8}{11}\) + \(\dfrac{3}{11}\) . \(\dfrac{7}{19}\) +\(\dfrac{-12}{19}\)
i) ( \(\dfrac{3}{8}\) + \(\dfrac{-3}{4}\)+ \(\dfrac{7}{12}\) ) : \(\dfrac{5}{6}\) +\(\dfrac{1}{2}\)
1:Tính
a) \(\left(\dfrac{1}{7}.x-\dfrac{2}{7}\right).\left(\dfrac{-1}{5}.x-\dfrac{2}{5}\right)=0\)
b) \(\dfrac{1}{6}.x+\dfrac{1}{10}.x-\dfrac{4}{5}.x+1=0\)
2:So sánh:
a) A=\(\left(\dfrac{-46}{51}.0,32.\dfrac{17}{20}\right):\dfrac{64}{75}\)
B=\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{8}.\dfrac{10}{11}\)
b) A=\(\dfrac{-1}{3}+\dfrac{0,2-0,375+\dfrac{5}{11}}{-0,3+\dfrac{9}{16}-\dfrac{15}{22}}\)
B=\(\dfrac{-43}{51}.\dfrac{19}{80}\)
Bài 1 : Tìm các số nguyên x , biết :
a) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{13}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
b) \(\left(\dfrac{31}{20}-\dfrac{26}{45}\right).-\dfrac{36}{35}< x< \left(\dfrac{51}{56}+\dfrac{8}{21}+\dfrac{1}{3}\right).\dfrac{8}{13}\)
Bài 2 :
C = \(\dfrac{-1}{3}.\dfrac{141}{17}-\dfrac{39}{9}.\dfrac{-1}{7}\)
Tính
a) A=3/4 . 8/9 .15/16 . ... . 2499/2500
b) B= \(\dfrac{2^2}{1.3}\) . \(\dfrac{3^2}{2.4}\) . \(\dfrac{4^2}{3.5}\). ... . \(\dfrac{50^2}{49.51}\)