Lời giải:
a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$
Khi đó:
Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)
\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)
Vì $a,b,c>0\Rightarrow a+b+c>0$
$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$
Do đó:
$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$
$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$
b)
Có: $4=\sqrt{16}>\sqrt{14}$
$\sqrt{33}>\sqrt{29}$
Cộng theo vế:
$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$
Lời giải:
a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$
Khi đó:
Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)
\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)
Vì $a,b,c>0\Rightarrow a+b+c>0$
$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$
Do đó:
$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$
$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$
b)
Có: $4=\sqrt{16}>\sqrt{14}$
$\sqrt{33}>\sqrt{29}$
Cộng theo vế:
$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$