Cho tam giác ABC và AM, BN CP là các đường phân giác trong của tam giác.
1) Tính tỉ số diện tích tam giác MNP và diện tích tam giác ABC theo các cạnh? Biết BC = a, AC = b, AB = c.
2) Giả sử tam giác ABC cân tại C và \(\dfrac{BC}{AB}=k\left(k\ne1\right)\). Chứng minh: \(\dfrac{S_{MNP}}{S_{ABC}}=\dfrac{k}{\left(k+1\right)^2}\)
Cho nửa đường tròn(O) đường kính AB, C là điểm chính giữa của cung AB và 1 điểm M trên cung CB . Kẻ đường cao CH của tam giác ACM.
a, Chứng minh tam giác HCM vuông cân và OH là tia phân giác của góc COM.
b, Gọi giao điểm của tia OH với CB là I và giao điểm thứ 2 của đường thẳng MI với nửa đường tròn(O) là D chứng minh MC//BD
GIÚP MÌNH VỚI!
Cho tam giác ABC nội tiếp đường tròn (O). Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròn (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và AC lần lượt tại M và N. c/m
a, tam giác AMN là tam giác cân
b, các tam giác EAI và DAI là những tam giác cân
c, tứ giác AMIN là hình thoi
1.Cho đa giác đều A1A2...A1990 có 1990 cạnh đều bằng 1. M là 1 điểm bất kì trên đường tròn ngoại tiếp đa giác . Gọi khoảng cách từ M đến các đỉnh của đa giác lần lượt là a1,a2, ... ,a1990. Chứng minh rằng \(a^2_1+a_2^2+...+a_{1990}\ge1990\).
2. Chứng minh rằng với mọi tam giác ta luôn có: \(R\ge2r\)(R, r lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp)
3. Cho đường tròn đường kính bằng 2 và n điểm A1,A2,...,An trên mặt phẳng . Chứng minh rằng ta có thể tìm được 1 điểm M trên đường tròn sao cho MA1+MA2+...+MAn \(\ge n\).
4. Gỉa sử a,b,c là các số dương và với số tự nhiên n bất kì có thể lập được 1 tam giác mà độ dài các cạnh lần lượt là an,bn,cn. Chứng minh rằng 2 trong 3 số a,b,c phải bằng nhau.
5. Trên mặt bàn đặt 50 cái đồng hồ có kim giờ và kim phút. Chứng minh rằng có 1 thời điểm nào đó tổng khoảng cách từ tâm mặt bàn đến các điểm đầu của kim phút lớn hơn tổng khoảng cách từ tâm mặt bàn đến tâm của các đồng hồ.( Xem mỗi đồng hồ là 1 hình tròn vẽ trên mặt bàn).
Cho tam giác ABC nội tiếp đường tròn(O;R) phân giác góc BAC cắt(O) tại M vẽ đường cao AH và bán kính AO
a, Cm AM là phân giác của góc OAH
b, Giả sử góc B >góc C . Chứng minh góc OAH =góc B - góc C
c, Cho góc BAC =60° , góc OAH =20° .Tính các góc B, C của tam giác ABC
Cho tam giác ABC kẻ đường cao AH. Gọi C' là điểm đối xứng của H qua AC. Gọi giao điểm của B'C' với AB, AC theo thứ tự là I và K. Chứng minh rằng BK, CI là các đường cao của tam giác ABC.
Cho đường tròn (O) có 2 đường kính AB, CD vuông góc với nhau. Trên cung nhỏ BC lấy điểm M khác B, C . Gọi P và Q lần lượt là giao điểm của AM với CD và BC.
1, Chứng minh rằng tứ giác BMPO nội tiếp và QM . QA = QB . QC
2, Gọi E và F lần lượt là giao điểm của MD với AB, BC. H là trung điểm của FC. Chứng minh rằng tứ giác CMFP nội tiếp và \(CP=\sqrt{2}HF\)
3, Chứng minh rằng khoảng cách từ điểm Q đến 3 cạnh của tam giác EMC là bằng nhau
Cho tam giác ABC nội tiếp đường tròn (O;R) có BC = 2R và AB < AC. Đường thẳng xy là tiếp tuyến với đường tròn (O) tại A. Tiếp tuyến tại B và C của đường tròn (O;R) lần lượt cắt đường thẳng xy ở D và E. Gọi F là trung điểm của đoạn DE.
a) Chứng minh ADBO là tứ giác nội tiếp
b) Gọi M là giao điểm thứ hai của FC với đường tròn (O;R). Chứng minh: ∠CED = 2∠AMB
c) Tính tích MC.BF theo R.
Cho tứ giác ABCD, gọi O là giao điểm của hai đường chéo AC và BD. Biết \(S_{AOB}=4,S_{COD}=9.\)Tìm GTNN của \(S_{ABCD}\)
(Làm nhanh lên, mình đang cần gấp).