\(3sinx-4sin^3x-4cos^3x+3cosx+\left(sinx+cosx\right)^2=0\)
\(\Leftrightarrow3\left(sinx+cosx\right)-4\left(sinx+cosx\right)\left(1-sinx.cosx\right)+\left(sinx+cosx\right)^2=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(3-4+4sinx.cosx+sinx+cosx\right)=0\)
Xét \(sinx+cosx+4sinx.cosx-1=0\)
Đặt \(sinx+cosx=t\) (\(\left|t\right|\le\sqrt{2}\)) \(\Rightarrow2sinx.cosx=t^2-1\)
\(\Rightarrow2\left(t^2-1\right)+t-1=0\)