\(\sqrt{\left(5+2\sqrt{6}\right)}+\sqrt{8-2\sqrt{15}}\)
= \(\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}.\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
= \(\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
= \(|\sqrt{2}+\sqrt{3}|+|\sqrt{5}-\sqrt{3}|\)
= \(\sqrt{2}+\sqrt{3}+\sqrt{5}-\sqrt{3}\) = \(\sqrt{2} +\sqrt{5}\)