Rút gọn\(B=\frac{3\sqrt{8}+2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\\ C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(\sqrt{4\sqrt{2}+4\sqrt{10-8\sqrt{3-2\sqrt{2}}}}\)
Rút gọn hộ mik vs <:
Tính
a.\(\sqrt{8+2\sqrt{5}}\) b.\(\sqrt{10-2\sqrt[]{5}}\) c.\(\sqrt{5+\sqrt{24}}\) d.\(\sqrt{12-\sqrt{140}}\)
e.\(\sqrt{14+2\sqrt{5}}\) f. \(\sqrt{8-\sqrt{28}}\) g.\(\sqrt{23-4\sqrt{15}}\) h.\(\sqrt{9+4\sqrt{2}}\)
giúp mik vs mai mik nộp rồi,cảm ơn mn nhiều
1)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
2)\(\sqrt{35+12\sqrt{6}}-\sqrt{35-12\sqrt{6}}\)
3)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Tính
A= \(\sqrt{4+\sqrt{15}}\)- \(\sqrt{4-\sqrt{15}}\) -\(\sqrt{2-\sqrt{3}}\)
B= \(\sqrt{9-2\sqrt{14}}\) +\(\sqrt{9-2\sqrt{14}}\)
C= \(\left(4+\sqrt{15}\right)\) \(\left(\sqrt{10}-\sqrt{6}\right)\) \(\sqrt{4-\sqrt{15}}\)
D= \(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}\) + \(\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2\sqrt{3}}}\)
Bài 1: Tính
\(\sqrt{3+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\\ \sqrt{12+6\sqrt{3}+\sqrt{12-6\sqrt{3}}}\\ \sqrt{9-4\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)
\(\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{9-\sqrt{32}}}}\\ \sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}\\ \sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\\ \sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
Bài 4: Rút gọn căn bậc 2 theo hằng đẳng thức
a> \(\sqrt{8+2\sqrt{15}}\)
b> \(\sqrt{23+4\sqrt{15}}\)
c> \(\sqrt{11+4\sqrt{6}}\)
d> \(\sqrt{14-6\sqrt{5}}\)
e> \(\sqrt{22-8\sqrt{6}}\)
f> \(\sqrt{16-6\sqrt{7}}\)
g> \(\sqrt{9-4\sqrt{2}}\)
h> \(\sqrt{13-4\sqrt{3}}\)
i> \(\sqrt{7-4\sqrt{3}}\)
j> \(\sqrt{21-8\sqrt{5}}\)
k> \(\sqrt{4-2\sqrt{3}}\)
p> \(\sqrt{5-2\sqrt{6}}\)
s>\(\sqrt{10-2\sqrt{21}}\)
x> \(\sqrt{28-10\sqrt{3}}\)
y> \(\sqrt{9-4\sqrt{5}}\)
bài 1: thực hiện phép tính
a, (\(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\)).\(\sqrt{3}\)
b, A=\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
c, \(\frac{9\sqrt{5^2+3\sqrt{27}}}{\sqrt{5}+\sqrt{3}}\)
d, \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
e, (\(\sqrt{12}+\sqrt{15}+\sqrt{27}\)):\(\sqrt{15}\)
f, (12\(\sqrt{50}-8\sqrt{200}+7\sqrt{450}\)):\(\sqrt{10}\)
g, (\(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{\frac{9}{7}}\)):\(\sqrt{7}\)
bài 2:rút gọn rồi tính các giá trị biểu thức
a, A= \(\sqrt{\frac{\left(x-6\right)^4}{\left(5-x\right)^2}}\)+\(\frac{x^2-36}{x-5}\) (x<5) tại x=4
b, B=5x-\(\sqrt{125}\)+\(\frac{\sqrt{x^3+5x^2}}{\sqrt{x+5}}\) (x ≥ 0)tại x=\(\sqrt{5}\)
Rút gọn rồi tính:
a) \(5\sqrt{\left(-2\right)^4}\) c)\(\sqrt{\sqrt{\left(-5\right)^8}}\)
b)\(-4\sqrt{\left(-3\right)^6}\)