Ta có : \(19=20-1=2.10-1\)
\(199=200-1=2.10^2-1\)
\(...\)
\(19..9=2.10^n-1\)
Ta lại có : \(95=100-5=10^{1+1}-5\)
\(995=1000-5=10^{2+1}-5\)
\(...\)
\(9...95=10^{n+1}-5\)
Vậy : \(\frac{19...9}{99...95}=\frac{2\left(10^n-\frac{1}{2}\right)}{10\left(10^n-\frac{1}{2}\right)}=\frac{1}{5}.\)