Rút gọn: \(\left(\dfrac{1}{2-\sqrt{3}}+\dfrac{2}{\sqrt{2}+\sqrt{3}}\right).\sqrt{21-12\sqrt{3}}\)
sửa đề: \(\left(\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{2}{\sqrt{2}+\sqrt{3}}\right).\sqrt{21-12\sqrt{3}}\)
\(\left(\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{2}{\sqrt{2}+\sqrt{3}}\right).\sqrt{21-12\sqrt{3}}\\ =\left(\dfrac{\sqrt{2}+\sqrt{3}+2\sqrt{2}-2\sqrt{3}}{2-3}\right).\sqrt{3}.\sqrt{7-4\sqrt{3}}\\ =\dfrac{3\sqrt{2}-\sqrt{3}}{-1}.\sqrt{3}.\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left(-3\sqrt{2}+\sqrt{3}\right).\sqrt{3}.\left(2-\sqrt{3}\right)\\ =\left(\sqrt{3}-3\sqrt{2}\right)\left(2\sqrt{3}-3\right)\\ =6-3\sqrt{3}-6\sqrt{6}+9\sqrt{2}\)
tới đó thì ko bt còn hay hết