\(\left[\frac{\sqrt{5}\left(1+\sqrt{5}\right)}{\sqrt{5}}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}\right].\frac{\sqrt{2}+\sqrt{5}}{1}=1+\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{2}+\sqrt{5}\right)=1+3=4\)
\(\left[\frac{\sqrt{5}\left(1+\sqrt{5}\right)}{\sqrt{5}}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}\right].\frac{\sqrt{2}+\sqrt{5}}{1}=1+\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{2}+\sqrt{5}\right)=1+3=4\)
Bài 1 : Rút gọn biểu thức
a, A=\(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\)
b, B=(\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\))2
c, C=\(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\) với 1 < a < 2
d, D=\(\sqrt{\left(7+4\sqrt{3}\right)\left(a-1\right)^2}\)
e, T=(\(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\))(\(\sqrt{63}+1\))
Bài 2: Tìm điều kiện xác định của các biểu thức sau
a,\(\sqrt{-3x+2}\)
b,\(\frac{1}{\sqrt{x}-1}\)
c,\(\frac{-2}{\sqrt{x^2+6}}\)
d,\(\sqrt{\frac{1}{x^2+x-2}}\)
Bài 3:Cho biểu thức: P=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)
a, rút gọn P
b, Tìm x để P<\(\frac{1}{2}\)
Rút gọn bt:
Câu 1: a, \(\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)
b, \(\sqrt{25a}+2\sqrt{45a}-3\sqrt{80a}+2\sqrt{16a}\left(a\ge0\right)\)ư
Câu 2: Cho bt: P =\(\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a, Tìm ĐKXĐ . Rút gọn P
B, Tìm x nguyên để P có gt nguyên
c, Tìm GTNN của P với a >1
Câu 3: Gỉai các pt
a, \(\sqrt{\left(2x-1\right)^2}=4\)
b, \(\sqrt{4x+4}+\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
a,\(\frac{2\sqrt{2}}{\sqrt{2\sqrt{2}+1}+1}-\frac{2\sqrt{2}}{\sqrt{2\sqrt{2}+1}-1}\)
b,\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}\)
c,\(\frac{2}{\sqrt{3}-\sqrt{5}}+\frac{3-2\sqrt{3}}{\sqrt{3}-2}\)
d,\(\frac{-4}{\sqrt{7}-\sqrt{5}}+\frac{1}{\sqrt{3}-1}+\frac{4-2\sqrt{5}}{\sqrt{5}-2}\)
e,\(\frac{6}{\sqrt{5}-1}+\frac{7}{1-\sqrt{3}}-\frac{2}{\sqrt{3}-\sqrt{5}}\)
Bài 1: Tính
1, \(A=\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2, \(B=\left(\frac{3\sqrt{125}}{15}-\frac{10-4\sqrt{6}}{\sqrt{5}-2}\right).\frac{1}{\sqrt{5}}\)
3, \(C=\left(\frac{\sqrt{1000}}{100}-\frac{5\sqrt{2}-2\sqrt{5}}{2\sqrt{5}-8}\right).\frac{\sqrt{10}}{10}\)
4, \(D=\frac{1}{\sqrt{49+20\sqrt{6}}}-\frac{1}{\sqrt{49-20\sqrt{6}}}+\frac{1}{\sqrt{7-4\sqrt{3}}}\)
5, \(E=\frac{1}{\sqrt{4-2\sqrt{3}}}-\frac{1}{\sqrt{7-\sqrt{48}}}+\frac{3}{\sqrt{14-6\sqrt{5}}}\)
6, \(F=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
7, \(G=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}-\sqrt{11-2\sqrt{10}}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}+\sqrt{12+8\sqrt{2}}}}\)
Thực hiện phép tính
a\(\left(1+\frac{5-\sqrt{5}}{1-\sqrt{5}}\right).\left(\frac{1+\sqrt{5}}{1+\sqrt{5}}+1\right)\) b\(\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
c \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
Giải :
1) \(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
2) \(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)
3) \(\frac{1}{1+\sqrt{2}+\sqrt{3}}\)
4) \(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\right):2\sqrt{5}\)
Trục căn thức ở mẫu và rút gọn
a, (\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\))(\(\sqrt{6} +11\))
b,(\(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\))(\(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\))
c,\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)- (\(\sqrt{2}+\sqrt{3}\))
d,(\(\frac{5-2\sqrt{5}}{2-\sqrt{5}}-2\))(\(\frac{5+3\sqrt{5}}{3+\sqrt{5}}-2\))
1) Rút gọn:
a) \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)
b) \(\frac{5}{12\left(2\sqrt{5}+3\sqrt{2}\right)}-\frac{5}{12\left(2\sqrt{5}-3\sqrt{2}\right)}\)
2) Tính A:
A = \(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{99}-\sqrt{100}}-\frac{1}{\sqrt{100}-\sqrt{101}}\)
THỰC HIỆN PHÉP TÍNH:
22) \(\frac{1}{\sqrt{5}+\sqrt{2}}+\frac{1}{\sqrt{5}-\sqrt{2}}\)
23) \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
24) \(\frac{\sqrt{18}}{\sqrt{2}}-\frac{\sqrt{12}}{\sqrt{3}}\)
25) \(\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
27) \(\sqrt{3-2\sqrt{2}}\)
28) \(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-2\sqrt{2}\)
30) \(\left(2\sqrt{1\frac{9}{16}}-\sqrt{5\frac{1}{16}}\right):\sqrt{16}\)
34) \(\frac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)
35) \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\frac{1}{4}\sqrt{8}\right).3\sqrt{6}\)
36) \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
39) \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}}\)
45) \(\frac{\sqrt{6-2\sqrt{5}}}{2-\sqrt{20}}\)