Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hải Yến Lê

Rút gọn biểu thức:

P=\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)với x\(\ge\)0 và x\(\ne\)1

Nguyễn Lê Phước Thịnh
20 tháng 4 2021 lúc 23:28

Ta có: \(P=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)


Các câu hỏi tương tự
Tam Akm
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Phùng Minh Phúc
Xem chi tiết
Anh Quynh
Xem chi tiết
Hải Yến Lê
Xem chi tiết
illumina
Xem chi tiết
Nguyễn Thị Thuỳ Dương
Xem chi tiết