rút gọn biểu thức: \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)và B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{x-9}\)vs x≥0;x≠9
rút gọn biểu thức M=A+B
Rút gọn biểu thức:
A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) với x\(\ge\)0,x\(\ne\)4,x\(\ne\)9
Câu 1:
Cho các biểu thức A = \(\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\), với x ≥ 0, x ≠ 9.
a) Tính giá trị của B khi x = 16;
b) Rút gọn biểu thức M = A - B;
c) Tìm x để M = \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}.\)
Câu 2:
a) Tính thể tích một viên kẹo sô-cô-la hình cầu có đường kính bằng 3cm.
b) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hai tổ sản xuất cùng làm chung một công việc thì sau 12 giờ xong. Nếu tổ 1 làm một mình trong 2 giờ, tổ 2 làm một mình trong 7 giờ thì cả hai tổ làm xong một nửa công việc. Tính thời gian mỗi tổ làm một mình xong toàn bộ công việc.
Câu 3:
1. Cho phương trình \(x-\left(m+3\right)\sqrt{x}+m+2=0\left(1\right)\)
a) Giải phương trình (1) khi m = - 4
b) Tìm m để phương trình (1) có hai nghiệm phân biệt.
2. Cho đường thẳng (d): y = (m - 1) + 4 (m ≠ 1). Đường thẳng (d) cắt Ox tại A, cắt Oy tại B. Tìm m để diện tích tam giác OAB bằng 2.
Câu 4:
Cho tam giác đều ABC nội tiếp đường tròn (O; R). Điểm M trên cung nhỏ AC. Hạ BK ⊥ AM tại K. Đường thẳng BK cắt tia CM tại E. Nối BE cắt đường tròn (O: R) tại N (N ≠ B).
a) Chứng minh tam giác MBE cân tại M;
b) Chứng minh EN.EB = EM.EC;
c) Tìm vị trí của M để tam giác MBE có chu vi lớn nhất.
Câu 5:
Giải hệ phương trình: \(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.\)
Chúc các em ôn thi tốt!
Câu 1:
Cho các biểu thức: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\) và \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\) với x ≥ 0, x ≠ 1, x ≠ 9.
a) Tính giá trị của B khi x = 25;
b) Rút gọn biểu thức M = A.B;
c) Tìm x sao cho \(M< \sqrt{M}.\)
Câu 2:
a) Khi uống nước giải khát, người ta hay sử dụng ống hút bằng nhựa hình trụ có đường kính đáy là 0,4cm, độ dài trục là 16cm. Hỏi khi thải ra môi trường, diện tích nhựa gây ô nhiễm môi trường do 100 ống hút này gây ra là bao nhiêu?
b) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Tìm số tự nhiên có hai chữ số mà hiệu giữa chữ số hàng chục và chữ số hàng đơn vị là 3. Còn tổng các bình phương hai chữ số của số đó bằng 45.
Câu 3:
1) Xác định tọa độ các giao điểm của parabol (P): y = x2 và đường thẳng (d): \(y=\sqrt{3}x-\sqrt{3}+1.\)
2) Cho hệ phương trình: \(\left\{{}\begin{matrix}\left|x\right|+y=m\\2\left|x\right|-y=1\end{matrix}\right.\)
a) Giải hệ phương trình khi m = -1;
b) Tìm m để hệ phương trình có hai nghiệm phân biệt.
Câu 4:
Cho đường tròn (O;R) đường kính AB. Bán kính OC⊥AB tại O. Điểm M thuộc cung nhỏ AC. Nối BM cắt AC tại H. Kẻ HK⊥AB tại K. Lấy E thuộc đoạn thẳng MB sao cho BE = AM.
a) Chứng minh tứ giác BCHK là tứ giác nội tiếp;
b) Chứng minh tam giác CME vuông cân;
c) Chứng minh OCMK là tứ giác nội tiếp và tâm đường trong ngoại tiếp tam giác MCK luôn thuộc một đường thẳng cố định khi M di chuyển trên cung nhỏ AC.
Câu 5:
Giải phương trình: \(\left(x^2-5x+1\right)\left(x^2-4\right)=6\left(x-1\right)^2.\)
Rút gọn biểu thức:
M=\(\left(\dfrac{x+\sqrt{x}+10}{x-9}-\dfrac{1}{\sqrt{x}-3}\right):\dfrac{1}{\sqrt{x}-3}\)với x\(\ge\)0;x\(\ne\)9
cho biểu thức:
P=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right)\)\(:\left(\dfrac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\dfrac{1}{x+1}\right)\)
với x\(\ge\)0;x\(\ne\)1
1)Rút gọn P
2)Tìm x để P<\(\dfrac{1}{2}\)
3) tìm m để phương trình (\(\sqrt{x}+1\))P= m-x có nghiệm x
cho các biểu thức: A=\(\dfrac{x-\sqrt[3]{x}}{x-1}\),B=\(\dfrac{1}{\sqrt[3]{x}-1}+\dfrac{1}{\sqrt[3]{x^2}+\sqrt[3]{x}+1}\);vs x\(\ne\)1
rút gọn biểu thức M=A+B
Cho biểu thức: \(A=\dfrac{\sqrt{x}-1}{2\sqrt{x}+1}-\dfrac{3}{1-2\sqrt{x}}-\dfrac{4\sqrt{x}+4}{4x-1}\) và \(B=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)với x > 0 , x = 1/4
a. TÍnh giá trị của biểu thức B biết \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
b. Rút gọn biểu thức A
rút gọn biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-\dfrac{2x-\sqrt{x}-3}{x-9}\)với x≥0;x≠9