ĐKXĐ: \(a\ne b\ne c\)
\(M=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{-1}{\left(a-b\right)\left(c-a\right)}+\frac{-1}{\left(b-c\right)\left(a-b\right)}+\frac{-1}{\left(c-a\right)\left(b-c\right)}\)
\(=\frac{-\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{-\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{-\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{-b+c-c+a-a+b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=0\)
\(M=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(M=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{-1}{\left(b-c\right)\left(a-b\right)}+\frac{1}{\left(a-c\right)\left(b-c\right)}\)
\(M=\frac{1\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{-1\left(a-c\right)}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{1\left(a-b\right)}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)
\(M=\frac{1\left(b-c\right)-1\left(a-c\right)+1\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\frac{b-c-a+c+a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\frac{0}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=0\)