Rút gọn biểu thức: \(B=\left(ab+bc+ca\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-abc.\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)
Giá trị của biểu thức \(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\) khi \(a+b+c=1\) và a ≠ -b; b ≠ -c; c ≠ -a là:
cho 3 số dương a,b,c chứng minh \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\ge\frac{10}{3}\)
Cho a, b, c là 3 số thực dương. CMR
\(\frac{\left(a+b\right)^2}{ab}+\frac{\left(b+c\right)^2}{bc}+\frac{\left(c+a\right)^2}{ca}\ge9+2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Chứng minh đẳng thức:
\(\dfrac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\dfrac{1}{\left(c-a\right)\left(b^2+ba-c^2-ca\right)}+\dfrac{1}{\left(a-b\right)\left(c^2+cb-a^2-ab\right)}=0\)
Các số a, b, c thỏa mãn: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\)
Tìm giá trị nhỏ nhất của biểu thức : \(M=ab+bc+ca-\left(a+b+c\right)+1\)
Phân tích đa thức sau thành nhân tử
\(k,ab\left(a+b\right)-bc\left(b+c\right)-ca\left(c-a\right)\)
\(l,a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
Cho a + b + c + d = 0 và ab + bc + ca = 1
Tính \(P=\dfrac{\left(ab-cd\right)\left(bc-ad\right)\left(ac-bd\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
cho a,b,c đôi một khác nhau thõa mãn ab+bc+ac=1
Tính giá trị biểu thức :
a)A\=\(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
b)B=\(\frac{\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ab-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)