\(a.\sqrt{73-12\sqrt{2}}=\sqrt{72-2.\sqrt{72}.1+1}=\sqrt{\left(\sqrt{72}-1\right)^2}=\sqrt{72}-1=6\sqrt{2}-1\)\(b.\sqrt{11-12\sqrt{2}}\) (căn thức không có nghĩa )
\(a.\sqrt{73-12\sqrt{2}}=\sqrt{72-2.\sqrt{72}.1+1}=\sqrt{\left(\sqrt{72}-1\right)^2}=\sqrt{72}-1=6\sqrt{2}-1\)\(b.\sqrt{11-12\sqrt{2}}\) (căn thức không có nghĩa )
Rút gọn biểu thức
\(A=\sqrt{30+12\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)
\(B=\sqrt{2+\sqrt{2}}.\sqrt{2+\sqrt{2+2}}.\sqrt{2-\sqrt{2+2}}\)
Bài 1: Tính \(a^2+b^2\) khi viết biểu thức \(\sqrt{17-12\sqrt{2}}\) về dạng \(a+b\sqrt{2}\)
Bài 2: Rút gọn biểu thức
a) \(\dfrac{\sqrt{a}-1}{a\sqrt{a}+\sqrt{a}-a}:\dfrac{1}{a^2+a}\)
Rút gọn các biểu thức sau:
a) \(\dfrac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\sqrt{12}\)
b) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
c) \(3\sqrt{2}-2\sqrt{3}+2\sqrt{3}+3\sqrt{2}\)
d) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
e) \(\dfrac{\sqrt{a}-\sqrt{b}^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\) với a > 0, b > 0
Bài 1: Giải phương trình
\(\sqrt{x^2-25}-6=3\sqrt{x+5}-2\sqrt{x-5}\)
Bài 2: Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-3};\) B = \(\dfrac{7}{\sqrt{x}+1}-\dfrac{12}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}\) .
a) Rút gọn M = A – B
b) Tìm giá trị nguyên nhỏ nhất để biểu thức M đạt giá trị nguyên nhỏ nhất.
Giúp mình với, mình đang cần gấp ạ
1. Rút gọn các biểu thức sau:
A = \(\sqrt{31-2\sqrt{30}}\)
B = \(\sqrt{11-2\sqrt{30}}\)
C = \(\sqrt{13-2\sqrt{30}}\)
D = \(\sqrt{39-6\sqrt{30}}\)
Rút gọn: \(\sqrt{12}-\dfrac{3+\sqrt{3}}{\sqrt{3}+1}+\dfrac{11}{2\sqrt{3}+1}\)
Cho biểu thức \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Tìm điều kiện xác định của \(A\)
b) Tính giá trị của biểu thức \(A\) khi \(x=0\)
c) Rút gọn biểu thức \(A\)
d) Tìm \(x\) để \(A=-\dfrac{8}{5}\)
e) Tìm \(x\) để \(A=\sqrt{x}-\dfrac{18}{5}\)
f) Tìm điều kiện của \(x\) để \(A< 0\)
g) Tìm điều kiện của \(x\) để \(A>0\)
h) Tìm tập hợp các số tự nhiên \(x\) để \(A>0\)
k) Chứng minh rằng \(A>-5\)
m) Tìm điều kiện của \(x\) để\(A>-3\)
n*) Tìm giá trị lớn nhất của biểu thức \(A\)
p*) Xét biểu thức \(M=A-\dfrac{27}{\sqrt{x}+3}\). Tìm giá trị nhỏ nhất của biểu thức \(M\)
q*) Tìm các số tự nhiên \(x\) để \(A\) là số nguyên
Bài 1. Tìm điều kiện để các biểu thức sau có nghĩa:
a. \(\sqrt{2+8x}\).
b. \(\sqrt{\dfrac{-1}{5}x+9}\)
c.\(\sqrt{11-7x}\)
Bài 2. Rút gọn các biểu thức sau:
a. \(\sqrt{48a}\) . \(\sqrt{3a}\) \(-2a\) với a \(\ge\) 0
b. \(\dfrac{1}{3}\sqrt{54}-3\sqrt{24}-\dfrac{\sqrt{66}}{\sqrt{11}}\)
Bài 3: Tìm x, biết:
a. \(\sqrt{\left(2x+3\right)^2}=3\)
b. \(\sqrt{4\left(x-2\right)}-4\sqrt{x-2}+\sqrt{9\left(x-2\right)}=4\)
Rút gọn biểu thức sau đây: \(\dfrac{a\sqrt{a}+b\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}\)