Bài 4: Liên hệ giữa phép chia và phép khai phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Linh

Rút gọn biểu thức:

a, \(\frac{2}{a}\sqrt{\frac{16a^2}{9}}\) với a < 0

b, \(\frac{3}{a-1}\sqrt{\frac{4a^2-8a+4}{25}}\) với a > 1

c, \(\frac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}\) với a ≠ b

d, \(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\) với a ≠ 1, a ≥ 0

Nguyễn Việt Lâm
12 tháng 6 2019 lúc 16:10

a/ \(\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{-8a}{3a}=-\frac{8}{3}\)

b/ \(\frac{3}{a-1}\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3}{\left(a-1\right)}.\frac{2\left|a-1\right|}{5}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)

c/ \(\frac{3\sqrt{9a^2b^4}}{\sqrt{a^2b^2}}=\frac{9.\left|a\right|.b^2}{\left|a\right|\left|b\right|}=9\left|b\right|\)

d/ \(\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

Hoàng Tử Hà
12 tháng 6 2019 lúc 16:15

a/ \(=\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{2}{a}.\frac{-4a}{3}=\frac{-8}{3}\)

b/ \(=\frac{3}{a-1}.\frac{\left|2a-2\right|}{5}=\frac{3}{a-1}.\frac{2\left(a-1\right)}{5}=\frac{6}{5}\)

c/ \(=\sqrt{\frac{162a^2b^4}{2a^2b^2}}=\sqrt{81b^2}=9\left|b\right|\)

d/ \(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)


Các câu hỏi tương tự
ppeachy do
Xem chi tiết
Hải Dương
Xem chi tiết
Mi Bạc Hà
Xem chi tiết
Mai Linh
Xem chi tiết
hello sunshine
Xem chi tiết
Nguyễn Trần Duy Thiệu
Xem chi tiết
illumina
Xem chi tiết
Mark Kim
Xem chi tiết
Nguyễn Phạm Trâm Anh
Xem chi tiết