Giải:
a) \(A=1+3+3^2+3^3+...+3^{99}+3^{100}\)
\(\Leftrightarrow3A=3+3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Leftrightarrow3A-A=2A=3^{101}-1\)
\(\Leftrightarrow A=\dfrac{3^{101}-1}{2}\)
b) \(B=1-3+3^2+3^3+...+3^{99}+3^{100}\)
\(\Leftrightarrow3B=3-3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Leftrightarrow3B-B=2B=3^{101}-1-6-18=3^{101}--25\)
\(\Leftrightarrow B=\dfrac{3^{101}-25}{2}\)
Chúc bạn học tốt!
\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\)
\(3A=3+3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(3A-A=\left(3+3^2+3^3+3^4+...+3^{100}+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{99}\right)\)
\(2A=3^{101}-1\Leftrightarrow A=\dfrac{3^{101}-1}{2}\)
B đề sai