\(A=2^{2010}+2^{2009}+...+2^2+2\)
\(\Rightarrow2A=2^{2011}+2^{2010}+...+2^3+2^2\)
\(\Rightarrow2A-A=\left(2^{2011}+2^{2010}+...+2^3+2^2\right)-\left(2^{2010}+2^{2009}+...+2^2+2\right)\)
\(\Rightarrow A=2^{2011}-2\)
Vậy \(A=2^{2011}-2\)
\(A=2^{2010}+2^{2009}+...+2^2+2\)
\(\Rightarrow2A=2^{2011}+2^{2010}+...+2^3+2^2\)
\(\Rightarrow2A-A=\left(2^{2011}+2^{2010}+...+2^3+2^2\right)-\left(2^{2010}+2^{2009}+...+2^2+2\right)\)
\(\Rightarrow A=2^{2011}-2\)
Vậy \(A=2^{2011}-2\)
Tính :
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)
x-1/2011+x-2/2010-x-3/2009=x-4/2008
Tìm x,y
a . (x+ 4/ 2007)+ (x+3/2008)=(x+2/2009)+(x+1/2010)
b . 2x+1 . 3y-2 = 12x
tính M =22010-(22009+22008+...+21+20)
Tính:
M= 22010-( 22009+22008+...+21+20)
1) Cho dãy tỉ số = nhau :
a1/a2 = a2/a3 = a3/a4 = ..... = a2008/a2009
CMR a1/a2009 = (a1 + a2 + a3 + .... + a2008/a2 + a3 + a4 + .... + a2009)2008
2) CMR nếu a(y + z) = b(x + z) = c(x + y) voi a,b,c khác nhau và khác 0 thì
\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
3) Cho a,b,c,d khác 0 tinh
T = x2011+y2011 + z2011 + t2011
biết x,y,z,t thỏa mãn
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{b^{2010}}{b^2}+\frac{c^{2010}}{c^2}+\frac{d^{2010}}{d^2}\)
Giúp mk giải chi tiết nhah đg cần gấp
M = 22010 - (22009 + 22008 + ..... + 22 + 21 + 20)
Neu cach tinh
Tính hợp lý
-1/2010 - 1/2010x 2009 - 1/2009x 2008 - .... - 1/3x 2 - 1/2x 1
Khai triển và thu gọn 2 đa thức \(f\left(x\right)=\left(x-2\right)^{2008}+\left(2x-3\right)^{2007}+2006x\) và \(g\left(x\right)=y^{2009}-2007y^{2008}+2005y^{2007}\)