\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2010}+1\right)-\left(\frac{x-3}{2009}+1\right)=\frac{x-4}{2008}+1\)
\(\Rightarrow\frac{x-1+2011}{2011}+\frac{x-2+2010}{2010}-\frac{x-3+2009}{2009}=\frac{x-4+2008}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}=\frac{x-2012}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=> x - 2012 = 0
=> x = 2012
Vậy x = 2012