\(\dfrac{1}{6x^2y^3}=\dfrac{7x^2}{42x^4y^3};\dfrac{-5}{21xy^2}=\dfrac{-10x^3y}{42x^4y^3};\dfrac{3}{14x^4y}=\dfrac{9y^2}{42x^4y^3}\)
\(\dfrac{1}{6x^2y^3}=\dfrac{7x^2}{42x^4y^3};\dfrac{-5}{21xy^2}=\dfrac{-10x^3y}{42x^4y^3};\dfrac{3}{14x^4y}=\dfrac{9y^2}{42x^4y^3}\)
Qui đồng mẫu thức các phân thức:
\(a,\dfrac{1}{6x^2y^3};\dfrac{-5}{21xy^2};\dfrac{3}{14x^4y}\)
\(b,\dfrac{2}{x^3-y^3};\dfrac{2x+1}{x^2-y^2}\)
Quy đồng mẫu thức các phân thức
a, \(\dfrac{-5}{6x^5y^3};\dfrac{3}{4x^2y^6};\dfrac{7}{3x^4y^5}\)
Qui đồng mẫu thức các phân thức:
\(\dfrac{-3}{x^2+6x+8};\dfrac{5}{x^2-16}\) và \(\dfrac{1}{x^2-2x-8}\)
Qui đồng mẫu thức các phân thức:
\(\dfrac{1}{2x^2+3x-5}\) và \(\dfrac{x+2}{4x-x^2-3}\)
Qui đồng mẫu thức các phân thức:
\(\dfrac{2}{x^3-y^3};\dfrac{1}{x+y}\) và \(\dfrac{2x+1}{x^2-y^2}\)
Qui đồng mẫu thức các phân thức:
\(\dfrac{x}{x^2+2x-15};\dfrac{1}{x^2+5x-6}\) và \(\dfrac{1}{-x^2+4x-3}\)
Qui đồng mẫu thức các phân thức:
\(\dfrac{2}{x^3-y^3}\) và \(\dfrac{2x+1}{x^2-y^2}\)
Qui đồng mẫu thức các phân thức:
\(\dfrac{4}{x^2-9}\) và \(\dfrac{1-x}{3x-x^2}\)
1.rút gọn biểu thuc P=\(\dfrac{2}{x+3}+\dfrac{1}{x-3}+\dfrac{9-x}{9-x^2}\) với x\(\ne-3vàx\ne3\)
2.thực hiện phép tính \(\left(2x^4-3x^3-3x^2+6x-1\right):\left(x^2-2\right)\)
\(\left(15x^4y^6-12^3y^4-18x^2y^3\right):\left(-6x^2y^2\right)\)