cho tam giác ABC vuông tại A ( AB < AC ) . từ trung điểm M của BC vẽ đường thẳng vuông góc với BC cắt AC tại N và cắt tia BA tại E
a, CM tam giác ABC đồng dạng với MBE
b, CM BC^2 = 4MN.ME
c, cho AB =9cm , AC=12cm . tính ME , BE
d, từ M kẻ đường thẳng song song với BE cắt CE tại F . tính V hình lăng trụ đứng , đáy là tam giác CMF và chiều cao là 10 cm
Bài 1: Cho tam giác ABC vuông tại A có AB = 12cm; AC = 16cm. Kẻ đường cao AH (H thuộcBC) a/ Chứng minh HAC đồng dạng ABC. b/ Tính độ dài các đoạn thẳng BC, HC. c/ Từ B vẽ đường phân giác BD . Tính độ dài các đoạn thẳng DA, DC.
Cho hình vuông ABCD. Trên cạnh BC lấy điểm E bất kỳ, trên tia đối của tia CD lấy điểm F sao cho CF=CE a. CM: DE=BF b. BD cắt EF tại K, DE cắt BF tại H. CM: FK, DH là các đường cao của tam giác DBF c. Gọi M là trung điểm của EF, O là giao điểm của AC và BD. CM: OM//AK
cho tam giác ABC vuông tại A, có AB = 3cm; AC = 4cm. Vẽ đường cao AH ( H ∈ BC)
a) Tính độ dài BC
b) Chứng minh tam giác HBA ∼ HAC
c) Chứng minh HA2 = HB.HC
d) Kẻ đường phân giác AD (D ∈ BC). Tính các độ dài DB và DC?
GIÚP MÌNH VỚI NHÉ, ĐANG CẦN GẤP!!!
CẢM ƠN MỌI NGƯỜI RẤT NHIỀU!!
cho tam giác ABC vuông tại A , đường cao AH , trung tuyến BN . Qua A kẻ đường thẳng vuông góc với BN và cắt BN và BC lần lượt tại PK và M . chứng minh 2/MB = 1/BH + 1/BC
Cho tam giác ABC vuông tại A có AB=8cm, AC=6cm, AD là tia phân giác góc A (D∈BC)
a. Tính tỉ số DB/DC và độ dài đoạn BD
b. Kẻ đường cao AH (H∈BC). Chứng minh rằng tam giác AHB đồng dạng tam giác CHA
c. Kẻ DE vuông góc AB (EϵAB) Tính SDEB
cho góc xOy , trên Ox lấy C,A sao cho: OC=1,6cm;OA=3cm . Trên Oy lấy D,B sao cho OD=1,2cm;OB=4cm
a, Chứng minh tam giác OAB~tam giác ODC
b, Tính diện tích tam giác OAB biết diện tích tam giác ODC là 3cm^2
c, qua B kẻ đường thằng song song với DC cắt Ox tại E. chứng minh OB^2=OA×OE
Cho tam giác ABC có gốc A là góc vuông đường cao AH, đường phân giác góc B cắt AC tại D cắt AH tại E
a) chứng minh tam giác ABC đồng dạng vs tam giác HBA
b) biết AB = 9cm , BC= 15cm. Tính DC và AD
c) gọi I là trung điểm của ED. CM : góc BIH= góc ACB