Mọi người giúp mình với ạ!!! Mình cảm ơn rất nhiều!!!
1, Viết phương trình đường thẳng đi qua các điểm cực trị của đồ thị hàm số:
\(y=x^3-6x^2-3x+2\)
2, Cho hàm số: \(y=x^3-x^2+mx\)
Tìm m để đồ thị hàm số có các điểm cực đại, cực tiểu: A, B sao cho Δ OAB vuông góc tại O.
Giả sử đồ thị hàm số y=x3 -3mx2+3(m+6)x+1 có hai cực trị. khi đó đường thẳng qua hai điểm cực trị có phương trình là:
Giả sử đồ thị hàm số y=x3 -3mx2+3(m+6)x+1 có hai cực trị. khi đó đường thẳng qua hai điểm cực trị có phương trình là:
Giả sử đồ thị hàm số y=x3 -3mx2+3(m+6)x+1 có hai cực trị. khi đó đường thẳng qua hai điểm cực trị có phương trình là:
Giả sử đồ thị hàm số y=x3 -3mx2+3(m+6)x+1 có hai cực trị. khi đó đường thẳng qua hai điểm cực trị có phương trình là:
Giả sử đồ thị hàm số y=x3 -3mx2+3(m+6)x+1 có hai cực trị. khi đó đường thẳng qua hai điểm cực trị có phương trình là:
Giả sử đồ thị hàm số y=x3 -3mx2+3(m+6)x+1 có hai cực trị. khi đó đường thẳng qua hai điểm cực trị có phương trình là:
Tìm tổng tất cả các giá trị thực của tham số
m sao cho đường thẳng đi qua hai điểm cực trị của đồ thị hàm số
\(y=2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x.\) song song đường thẳng y= -4x
.
Tìm tất cả các giá trị thực của tham số \(m\) để khoảng cách từ điểm \(M\left(0;3\right)\) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y=x^3+3mx+1\) bằng \(\dfrac{2}{\sqrt{5}}\)