Cho bât phương trình \(2\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+2m-9\). Tìm các giá trị của tham số m để bất phương trình nghiệm đứng với \(\forall\) x thuộc [-1;3]
số nghiệm của phương trình \(\left(x^{ }2-3\right)\)x\(\sqrt{x-1}\)=\(\sqrt{x-1}\)
Tìm tập xác định của các hàm số sau:
1) y =\(\dfrac{2x^2-2}{\left|x^{^2}-4\right|+\left|x+2\right|}\)
2) y = \(\dfrac{3x-2}{\left|x-2\right|-\left|x+1\right|}\)
3) y = \(\dfrac{\sqrt{x^{^2}+10}-\sqrt{2x+11}}{\left|3x-2\right|-4}\)
4) y = \(\dfrac{x^{^3}-3}{\sqrt{x-2}-\sqrt{7-3x}}\)
Giải hpt :
1. \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x\sqrt{x^2+y}+y=\sqrt{x^4+x^2}+x\\x+\sqrt{y}+\sqrt{x-1}+\sqrt{y\left(x-1\right)}=\frac{9}{2}\end{matrix}\right.\)
3.
Giải phương trình
a, \(\sqrt[3]{x^2-1}+3=\sqrt{x^3-2}.\)
b, \(x^2-x-2\sqrt{1+16x}=2\)
c, \(\left(x-3\right)\left(x+1\right)+3\left(x-2\right).\sqrt{\frac{x+1}{x-3}=4}\)
d, \(\sqrt{\frac{x+1}{x-1}}-\sqrt{\frac{x-1}{x+1}}=\frac{3}{2}\)
e, \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}=2}\)
Giải dùm với 1 câu cũng được cảm ơn tik nhiệt tình
Giải phương trình
a, \(\sqrt[3]{x^2-1}+3=\sqrt{x^3-2}.\)
b, \(x^2-x-2\sqrt{1+16x}=2\)
c, \(\left(x-3\right)\left(x+1\right)+3\left(x-2\right).\sqrt{\frac{x+1}{x-3}=4}\)
d, \(\sqrt{\frac{x+1}{x-1}}-\sqrt{\frac{x-1}{x+1}}=\frac{3}{2}\)
e, \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}=2}\)
Giải dùm với 1 câu cũng được Toán khó
tập nghiệm của bất phương trình \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+a\) nghiệm đúng \(\forall x\in\)[5;3] , Tham số a phải thỏa điều kiện gì?
Giải pt sau\(x^2-2x+8-4\sqrt{\left(4-x\right)\left(x+2\right)}\)=0
tìm m để mọi \(x\in\left[0,+\infty\right]\) đều là nghiệm của bất phương trình \(\left(m^2-1\right)x^2-8mx+9-m^2\ge0\)