Bài 3: Một số phương trình lượng giác thường gặp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cao Hạ Anh

Phương trình \(2sin^2x-4sinxcosx+4cos^2x=1\) có phương trình tương đương là?

Giúp mk vs ạ

Kimian Hajan Ruventaren
27 tháng 8 2021 lúc 21:28

TH1: Xét cox = 0 ( có p là nghiệm ko)

TH2: Xét \(\cos x\ne0\). Ta chia cả hai vế \(\cos^2x\)

Pt trở thành \(2\tan^2x-4\tan x+4-1\left(1+\tan^2x\right)=0\)

\(\Leftrightarrow\tan^2x-4\tan x+3=0\)

Đặt \(\tan x=t\). Giải pt nữa là xg ạ

Hồng Phúc
27 tháng 8 2021 lúc 21:30

\(2sin^2x-4sinx.cosx+4cos^2x=1\)

\(\Leftrightarrow2\left(sin^2x+cos^2x\right)-4sinx.cosx+2cos^2x-1=0\)

\(\Leftrightarrow2-2sin2x+cos2x=0\)

\(\Leftrightarrow2sin2x-cos2x=2\)

\(\Leftrightarrow\sqrt{5}\left(\dfrac{2}{\sqrt{5}}sin2x-\dfrac{1}{\sqrt{5}}cos2x\right)=2\)

\(\Leftrightarrow sin\left(2x-arccos\dfrac{2}{\sqrt{5}}\right)=\dfrac{2}{\sqrt{5}}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-arccos\dfrac{2}{\sqrt{5}}=arcsin\dfrac{2}{\sqrt{5}}+k2\pi\\2x-arccos\dfrac{2}{\sqrt{5}}=\pi-arcsin\dfrac{2}{\sqrt{5}}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}arccos\dfrac{2}{\sqrt{5}}+\dfrac{1}{2}arcsin\dfrac{2}{\sqrt{5}}+k\pi\\x=\dfrac{\pi}{2}+\dfrac{1}{2}arccos\dfrac{2}{\sqrt{5}}-\dfrac{1}{2}arcsin\dfrac{2}{\sqrt{5}}+k\pi\end{matrix}\right.\)


Các câu hỏi tương tự
Phương Thảo
Xem chi tiết
CM Punk
Xem chi tiết
Nkjuiopmli Sv5
Xem chi tiết
abc
Xem chi tiết
Tuấn Tú
Xem chi tiết
lu nguyễn
Xem chi tiết
Hàn Nhật Hạ
Xem chi tiết
Trần Thị Hằng
Xem chi tiết
Hàn Nhật Hạ
Xem chi tiết