\(x^2-x+\frac{5}{36}\)
\(=x^2-\frac{1}{6}x-\frac{5}{6}x+\frac{5}{36}\)
\(=x\left(x-\frac{1}{6}\right)-\frac{5}{6}\left(x-\frac{1}{6}\right)\)
\(=\left(x-\frac{1}{6}\right)\left(x-\frac{5}{6}\right)\)
\(x^2-x+\frac{5}{36}\)
\(=x^2-\frac{1}{6}x-\frac{5}{6}x+\frac{5}{36}\)
\(=x\left(x-\frac{1}{6}\right)-\frac{5}{6}\left(x-\frac{1}{6}\right)\)
\(=\left(x-\frac{1}{6}\right)\left(x-\frac{5}{6}\right)\)
\(x^2-x+\frac{5}{36}\)
\(=x^2-\frac{1}{6}x-\frac{5}{6}x+\frac{5}{36}\)
\(=x\left(x-\frac{1}{6}\right)-\frac{5}{6}\left(x-\frac{1}{6}\right)\)
\(\left(x-\frac{1}{6}\right)\left(x-\frac{5}{6}\right)\)
x2-x+5/36
=x2-x+1/4-1/4+5/36
=(x-1/2)2-1/9
=> (x-1/2-1/9)(x-1/2+1/9)
=(x-11/18)(x-7/18)