Câu 1: Đa thức -2x^2y +xy + 1 đc viết thành tổng của 2 đa thức nào.
Câu 2 : Đa thức x^2y^2 + 2xy -3 đc viết thành tổng của 2 đa thức nào.
Câu 3 : Đa thức -2x^2y + xy +1 đc viết thành hiệu của 2 đa thức nào.
Câu 4 : Đa thức x^2y^2 -2xy +3 đc viết thành hiệu của 2 đa thức nào.
Phân tích đa thức thành nhân tử
1, a6 + b3
2, x2 – 10x + 25
3, 8x3 – \(\dfrac{1}{8}\)
4, x2 + 4xy + 4y2
phân tích đa thức sau thành nhân tử :
a, 2x^2y - 8xy^2
b, x^2 -2xy + y^2 -16
Bài 1: Phân tích các đa thức sau thành nhân tử
a)x2-y2-2x+2y e)x4+4y4
b)x2(x-1)+16(1-x) f)x4-13x2+36
c)x2+4x-y2+4 g) (x2+x)2+4x2+4x-12
d)x3-3x2-3x+1 h)x6+2x5+x4-2x3-2x2+1
e, \(-2xy^2+x^2y^4-10
\)
\(=x^2y^4-2xy^2+1-1-10\)
\(=\left(xy^2-1\right)^2-11\)
Vì \(\left(xy^2-1\right)^2\) ≥ 0 nên \(\left(xy^2-1\right)^2-11\) ≥ -11 với mọi X
Dấu "=" xảy ra ⇔ \(xy^2-1=0\)
⇔ \(xy^2=1\)
Vậy GTNN của đa thức là -11 tại \(xy^2\) = 1
Rút gọn \(\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}:\dfrac{1}{2x^2+y+2}\)
Cho đa thúc A= 2x^4+3x^3-4x^2-3x+2 và đa thức B= x+2
1) Làm tính chia đa thức A cho đa thức B.
2) Hãy phân tích đa thức thương của phép chia đa thức A cho đa thức B thành nhân tử.
BÀI 8: THU GỌN VÀ TÌM BẬC CỦA MỖI ĐA THỨC:
A= -2xy + 3/2xy^2 + 1/2xy^2 + xy
B= xy^2z + 2xy^2z - xyz - 3xy^2z + xy^2z
C= 4x^2y^3 + x^4 - 2x^2 + 6x^4 - x^2y^3
D= 3/4xy^2 - 2xy - 1/2xy^2 + 3xy
E= 2x^2 - 3y^3 - z^4 - 4x^2 + 2y^3 + 3z^4
F= 3xy^2z + xy^2z - xyz + 2xy^2z -3xyz
Bài1: Thực hiện phép tính
a) 2x(3x2 – 5x + 3) b) - 2x ( x2 + 5x+3)
Bài 4: Tìm x, biết.
a/ 3x + 2(5 – x) = 0 b/ x(2x – 1)(x + 5) – (2x2 + 1)(x + 4,5) = 3,5
c/ 3x2 – 3x(x – 2) = 36.
II. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
Bài1: Phân tích đa thức thành nhân tử.
a/ 14x2y – 21xy2 + 28x2y2 b/ x(x + y) – 5x – 5y.
c/ 10x(x – y) – 8(y – x). d/ (3x + 1)2 – (x + 1)2
e/ 5x2 – 10xy + 5y2 – 20z2. f/ x2 + 7x – 8
g/ x3 – x + 3x2y + 3xy2 + y3 – y h/ x2 + 4x + 3.