a) \(x^{12}-y^4=\left(x^6\right)^2-\left(y^2\right)^2=\left(x^6-y^2\right)\left(x^6+y^2\right)=\left(x^3-y\right)\left(x^3+y\right)\left(x^6+y^2\right)\)
b) \(x^9+1=\left(x^3\right)^3+1=\left(x^3+1\right)\left(x^6-x^3+1\right)=\left(x+1\right)\left(x^6-x^3+1\right)^2\)
c) \(x^6-y^6=\left(x^2\right)^3-\left(y^2\right)^3=\left(x^2-y^2\right)\left(x^4-x^2y^2+y^4\right)=\left(x-y\right)\left(x+y\right)\left(x^4-x^2y^2+y^4\right)\)
d) \(x^6+1=\left(x^2\right)^3+1=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
e) \(9x^6-12x^7+4x^8=x^6\left(9-12x+4x^2\right)=x^6\left(3-2x\right)^2\)