b, \(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2\right)-3z^2\)
\(=3\left(x+y\right)^2-3z^2=3\left(x+y+z\right)\left(x+y-z\right)\)
c,\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left(x-y+z-t\right)\left(x-y-z+t\right)\)
e,\(=-\left(x^2-2xy+y^2-16\right)=-\left[\left(x-y\right)^2-16\right]\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
f, \(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)=2\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(2-x+y\right)\)
g,\(=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2x+2\right)\)
h,\(=x^3+x^2+x^2+x+x+1=x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
\(x^2+4x-y^2+4=\left(x+2\right)^2-y^2=\left(x+2-y\right)\left(x+2+y\right)\)
\(3x^2+6xy+3y^2-3z^2=3\left(x^2+xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left[\left(x+y+z\right)\left(x+y-z\right)\right]\)
mấy bài còn lại cứ tương tự như vậy nha