Ta có: \(x^3-y^3=3x-3y\Leftrightarrow x^2+xy+y^2=3\) (Do \(x\neq y\)).
Tương tự: \(y^2+yz+z^2=3;z^2+zx+x^2=3\).
Cộng vế với vế ta có: \(2\left(x^2+y^2+z^2\right)+xy+yz+zx=9\)
\(\Leftrightarrow\dfrac{3\left(x^2+y^2+z^2\right)}{2}+\dfrac{\left(x+y+z\right)^2}{2}=9\).
Mặt khác, từ đó ta cũng có: \(\left(x^2+xy+y^2\right)-\left(y^2+yz+z^2\right)=0\Leftrightarrow\left(x+y+z\right)\left(x-z\right)=0\Leftrightarrow x+y+z=0\).
Do đó \(x^2+y^2+z^2=6\left(đpcm\right)\).