a)
\(3\sqrt{2}-2\sqrt{3}+6\)
\(=\sqrt{6}\left(\sqrt{3}-\sqrt{2}+\sqrt{6}\right)\)
b)
\(2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3\)
\(=2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{5}-\sqrt{3}\right)\)
c)
\(\sqrt{8}-\sqrt{5}-2+\sqrt{10}\)
\(=2\left(\sqrt{2}-1\right)+\sqrt{5}\left(\sqrt{2}-1\right)\)
\(=\left(\sqrt{2}-1\right)\left(2+\sqrt{5}\right)\)
d)
\(a\sqrt{b}+b\sqrt{a}=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
e)
\(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)