g ) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
h ) \(9x^2y^2+6xy^2+y^2-1\)
\(=y^2\left(9x^2+6x+1\right)-1\)
\(=y^2\left(3x+1\right)^2-1\)
\(=\left[y\left(3x+1\right)\right]^2-1\)
\(=\left(3xy+y\right)^2-1\)
\(=\left(3xy+y-1\right)\left(3xy+y+1\right)\)
i ) \(x^2-x-2=x^2-x+\dfrac{1}{4}-\dfrac{9}{4}=\left(x-\dfrac{1}{2}\right)^2-\left(\dfrac{3}{2}\right)^2=\left(x-\dfrac{1}{2}-\dfrac{3}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{3}{2}\right)=\left(x-2\right)\left(x+1\right)\)