\(P\left(x\right)=\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(P\left(x\right)=\dfrac{\left(3y-3xy\right)-\left(2-2x\right)}{\left(1-x^3\right)-\left(3x-3x^2\right)}\)
\(P\left(x\right)=\dfrac{3y\left(1-x\right)-2\left(1-x\right)}{\left(1-x\right)\left(1+x+x^2\right)-3x\left(1-x\right)}\)
\(P\left(x\right)=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)\left(1+x+x^2-3x\right)}\)
\(P\left(x\right)=\dfrac{3y-2}{1-2x+x^2}\)
\(P\left(x\right)=\dfrac{3y-2}{\left(1-x\right)^2}\)