Caau1: Biết \(y^2+yz+z^2=1-\frac{3x^2}{2}\)Tìm GTLN, GTNN của A=x+y+z
Caau2:Cho x, y, z la các số dương thỏa mãn \(x^2+y^2+z^2\le3\)Tìm GTNN của biểu thức P=\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\)
Caau3: Tìm GTLN của P=\(\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
Caau4 TTìm GTNN của M=\(x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
Cho y = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}\) + 1 - \(\frac{2x+\sqrt{x}}{\sqrt{x}}\)
a. Rút gọn y. Tìm x để y = 2
b. Cho x > 1. Chứng minh y - |y| = 0
c. Tìm GTNN của y
Rút gọn
\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\) -( \(\sqrt{x}-\sqrt{y}\))2
\(\sqrt{\frac{x-2\sqrt{x}}{x+2\sqrt{x}+1}}\) (x >_ 0)
\(\frac{x-1}{\sqrt{y}-1}\) . \(\sqrt{\frac{\left(2\sqrt{y}+1\right)^2}{\left(x-1\right)}}\) với x # 1, y# 1,y>0
\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}\) : \(\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) rồi tính giá trị với a= 7,25 b= 3,25
4x - \(\sqrt{8}\) + \(\sqrt{\frac{x^3+2x^2}{\sqrt{x+2}}}\) với x =- \(\sqrt{2}\)
Cho A=\(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\left(x\ge0;x\ne1\right)\)
Tìm GTNN của A
1. Cho biểu thức: A= \(\left(\frac{4\sqrt{y}}{2+\sqrt{y}}+\frac{8y}{4-y}\right):\left(\frac{\sqrt{y}-1}{y-2\sqrt{y}}+\frac{2}{\sqrt{y}}\right)\)
a) rút gọn A
b) tìm y để A =-2
2. cho biểu thức P=\(\frac{x-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}+2}\)
a) rút gọn P
b) tìm x ∈ Z để P nhận nguyên
3. cho biểu thức B=\(\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)
a) rút gọn B
b) tìm x để B<0
Giúp mình làm nhanh với ạk . cần gấp !!!!!
Cho \(\sqrt{x}+\sqrt{y}=1\). Tính :
\(\frac{\sqrt{x}}{\sqrt{y^3}-1}-\frac{\sqrt{y}}{\sqrt{x^3}-1}+\frac{2\left(\sqrt{x}-\sqrt{y}\right)}{xy+3}\)
Cho \(x,y>0\) và \(\left(x+y-1\right)^2=xy.\) Tìm GTNN của \(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+\frac{\sqrt{xy}}{x+y}\)
Giúp tớ với mọi người :<<
Cho 3 số dương x,y,z thỏa mãn x + y + z = xyz. Cmr:
\(A=\frac{\sqrt{\left(1+y^2\right)\left(1+z^2\right)}-\sqrt{1+y^2}-\sqrt{1+z^2}}{yz}+\frac{\sqrt{\left(1+z^2\right)\left(1+x^2\right)}-\sqrt{1+x^2}-\sqrt{1+z^2}}{xz}+\frac{\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\sqrt{1+x^2}-\sqrt{1+y^2}}{xy}=0\)
Cho P=(\(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\)):(\(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\))
a) rút gọn
b) tìm x: P<1/2
c) tìm gtnn của P