Với x,y>0 ta được
P=\(\dfrac{x\cdot\sqrt{y}+y.\sqrt{x}}{\sqrt{xy}}\)
=\(\dfrac{\sqrt{xy}\cdot\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)
=\(\sqrt{x}+\sqrt{y}\)
Với x,y>0 ta được
P=\(\dfrac{x\cdot\sqrt{y}+y.\sqrt{x}}{\sqrt{xy}}\)
=\(\dfrac{\sqrt{xy}\cdot\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)
=\(\sqrt{x}+\sqrt{y}\)
a. Khử mẫu của biểu thức sau rồi rút gọn:-7xy.\(\sqrt{\dfrac{3}{xy}}\)với x,y<0
b. Phân tích thành nhân tử biểu thức: ab+b\(\sqrt{a}+\sqrt{a}+1\)(với a≥0)
1.Giải hệ phương trình:
\(\left\{{}\begin{matrix}2x+y=5\\3x-2y=11\end{matrix}\right.\)
2.Rút gọn biểu thức:
B=\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{1}{\sqrt{x}+2}\)với x>0;x\(\ne\)9
Cho biểu thức S=\(\left(\dfrac{\sqrt{y}}{x+\sqrt{xy}}+\dfrac{\sqrt{y}}{x-\sqrt{xy}}\right):\dfrac{2\sqrt{xy}}{x-y}\) (Với x>0,x\(\ne\)y)
a.Rút gọn S
b. Tìm x,y để S=1
Rút gọn : \(2y\sqrt{x-y}+x\sqrt{\dfrac{1}{x-y}}-x\sqrt{\dfrac{a}{ax-xy}-\sqrt{x^3-x^2y}}\)
(Với x,y >0)
1.giải hệ phương trình:
\(\left\{{}\begin{matrix}2x-y=3\\x+y=0\end{matrix}\right.\)
2.Rút gọn biểu thức
\(A=\dfrac{x+20}{x-4}+\dfrac{2}{\sqrt{x}+2}-\dfrac{6}{\sqrt{x}-2}\) với x\(\ge\)0;x\(\ne\)4
Rút gọn biểu thức 1) \(\dfrac{\sqrt{14}-\sqrt{21}}{\sqrt{7}}\) .
2) \(\dfrac{\sqrt{a^2+5a+6}}{\sqrt{a+3}}\)
3) \(\sqrt{3\left(x^2-10x+25\right)}.\sqrt{27}\) với x < 5
4)
\(\dfrac{y}{x}\sqrt{\dfrac{x^2}{y^4}}\) với x > 0; y < 0
5) \(\dfrac{1}{x-y}.\sqrt{x^6\left(x-y\right)^4}\) với x \(\ne\) y
Rút gọn:
\(A=\dfrac{\sqrt[3]{x^4}+\sqrt[3]{x^2y^2}+\sqrt[3]{y^4}}{\sqrt[3]{x^2}+\sqrt[3]{xy}+\sqrt[3]{y^2}}\)
\(B=\dfrac{\sqrt[3]{xy}\left(\sqrt[3]{y^2}-\sqrt[3]{x^2}\right)+\left(\sqrt[3]{x^4}-\sqrt[3]{y^4}\right)}{\sqrt[3]{x^4}+\sqrt[3]{x^2y^2}-\sqrt[3]{x^3y}}.\sqrt[3]{x^2}\)
\(C=\left(\dfrac{x\sqrt[3]{x}-2x\sqrt[3]{y}+\sqrt[3]{x^2y^2}}{\sqrt[3]{x^2}-\sqrt[3]{xy}}+\dfrac{\sqrt[3]{x^2y}-\sqrt[3]{xy^2}}{\sqrt[3]{x}-\sqrt[3]{y}}\right).\dfrac{1}{\sqrt[3]{x^2}}\)
Rút gọn rồi tính giá trị của biểu thức:
B=\(\dfrac{2y\sqrt{1+x^2}}{\sqrt{1+x^2}-x}\) với x=\(\dfrac{1}{2}\left(\sqrt{\dfrac{1-y}{y}}-\sqrt{\dfrac{y}{1-y}}\right)\) với 0<y<1
Rút gọn biểu thức A=\(\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\)
Rút gọn các biểu thức sau:
a) \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\), \(x\ge0\)
b) \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\sqrt{\dfrac{9x^3}{64}}\), \(x>0\)
c) \(C=\dfrac{y}{2}+\dfrac{3}{4}\sqrt{1+9y^2-6y}-\dfrac{3}{2}\), \(y\le\dfrac{1}{3}\)