Rút gọn và tìm GTNN của biểu thức:
\(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right)+\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}+x}\right)\)
a, Rút gọn
b, Để P >2 , tìm x
c, tìm gtnn của \(\sqrt{P}\)
Cho P = \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
a) rút gọn P
b) tính giá trị của P khi x =\(\frac{2}{2-\sqrt{3}}-2\sqrt{3}\)
c) khi \(\sqrt{P}\) có nghĩa, hãy tìm GTNN của \(\sqrt{P}\)
\(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a, Rút gọn P
b, Tìm x để P đạt GTNN
Cho biểu thức: \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a) Rút gọn P
b) Tìm x để P < \(\frac{1}{2}\)
c) Tìm GTNN của P
\(A=\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}-\frac{10-\sqrt{x}}{x-5\sqrt{x}+6}\)
a, Rút gọn
b, Biết \(B=\frac{x-4\sqrt{x}+20}{A\left(\sqrt{x}-2\right)}\) , tìm gtnn của B
Cho P =\(\frac{\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)}{\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)}\)
a, Rút gọn p
b, Tính giá trị P biết x=\(\frac{3-\sqrt{x}}{2}\)
c, Tìm x để P đạt GTNN
Rút gọn biểu thức:
1) \(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\cdot\left(x-1\right)}{\sqrt{x}-1}\)
2) \(P=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\frac{\left(1-x\right)^2}{2}\)
3) \(B=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
4) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right)\div\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
1/Rút gọn
A=\(\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{xy}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\left(\sqrt{x^3+x}\right)}\)(x>0; y>0; x#y)
B= \(\left(\frac{1}{\sqrt{x}+1}-\frac{1}{x+\sqrt{x}}\right):\frac{x-\sqrt{x}+1}{x\sqrt{x}+1}\)( x>0)
C=\(\left(\frac{x+1}{\sqrt{x}}+2\right).\frac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x\sqrt{x}+1\right)}\)(x>0)
D=\(\left(\frac{x\sqrt{x}-1}{\sqrt{x}-1}+\sqrt{x}\right):\left(x-1\right)-\frac{2}{\sqrt{x}-1}\)(x>=0; x#1)
giúp em với ạ em đang cần gấp ạ