Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhã Doanh

Ở vương quốc " Sắc màu kì ảo" có 45 hiệp sĩ: 13 hiệp sĩ tóc đỏ, 15 hiệp sĩ tóc vàng, còn lại là tóc xanh. Khi 2 hiệp sĩ khác màu tóc gặp nhau thì lập tức tóc của họ chuyển sang màu thứ ba. Hỏi sau hữu hạn lần gặp nhau thì các hiệp sĩ có cùng màu tóc không? Vì sao????

Phùng Khánh Linh
9 tháng 6 2018 lúc 19:44

Bài này trong đề thi của tụi tui nè :V

Gỉa sử tại một lúc nào đó , ta có a hiệp sĩ tóc đỏ , b hiệp sĩ tóc vàng , c hiệp sĩ tóc xanh , ta đặt : N = a - b ( mod 3).

+) Nếu hiệp sĩ tóc đỏ gặp hiệp sĩ tóc vàng thì : a → a - 1 ; b → b - 1 ; c → c + 2

⇒ N = ( a - 1) - ( b - 1)( mod 3) = a - b( mod 3 ) ( không thay đổi)

+) Nếu hiệp sĩ tóc vàng gặp hiệp sĩ tóc xanh thì : a → a + 2 ; b → b - 1 ; c → c - 1

⇒ N = ( a + 2) - ( b - 1)( mod 3) = a - b( mod 3) ( không thay đổi)

+) Nếu hiệp sĩ tóc đỏ gặp hiệp sĩ tóc xanh thì : a → a - 1 ; b → b + 2 ; c → c - 1

⇒ N = ( a - 1) - ( b + 2)( mod 3) = a - b (mod 3 ) ( không thay đổi)

Lúc đầu , ta có : N = 13 - 15 ( mod 3) = 1 ( mod 3) , khi đổi tóc ta luôn có : N = 1 ( mod 3) nên ko xảy ra lần các hiệp sĩ có cùng màu tóc , vì có : N = 0 ( mod 3)


Các câu hỏi tương tự
Hưng Trần Minh
Xem chi tiết
Mi Thanh
Xem chi tiết
Nguyễn Thu Trang
Xem chi tiết
Nguyễn Thu Trang
Xem chi tiết
Trinh Thi Huong
Xem chi tiết
Minh Linh Dam Duc
Xem chi tiết
:WFL:
Xem chi tiết
Thảo My
Xem chi tiết
Big City Boy
Xem chi tiết