a: \(N=\left(\dfrac{\left(1-a\right)\left(a^2+a+1\right)}{1-a}-a\right)\cdot\dfrac{a^3-a^2-a+1}{-\left(a^2-1\right)}\)
\(=\left(a^2+1\right)\cdot\dfrac{a^2\left(a-1\right)-\left(a-1\right)}{-\left(a-1\right)\left(a+1\right)}\)
\(=-\left(a^2+1\right)\cdot\dfrac{\left(a-1\right)\left(a^2-1\right)}{\left(a-1\right)\left(a+1\right)}\)
\(=-\left(a^2+1\right)\cdot\left(a-1\right)\)
b: Để N<0 thì \(-\left(a^2+1\right)\left(a-1\right)< 0\)
\(\Leftrightarrow\left(a^2+1\right)\left(a-1\right)>0\)
=>a-1>0
hay a>1