a) Ta có: \(x^2+10x+26+y^2+2y=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
b) Ta có: \(a^2+5b^2+2ab+4b+1=\left(a^2+2ab+b^2\right)+\left(4b^2+4b+1\right)\)
\(=\left(a+b\right)^2+\left(2b+1\right)^2\)
c) Ta có: \(4x^2+4x+10+6y+y^2=\left(4x^2+4x+1\right)+\left(y^2+6y+9\right)\)
\(=\left(2x+1\right)^2+\left(y+3\right)^2\)
a) \(x^2+10x+26+y^2+2y=x^2+2.5.x+5^2+y^2+2.y.1+1^2\) = \(\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(a^2+5b^2+2ab+4b+1=a^2+2ab+b^2+4b^2+4b+1\)
= \(\left(a+b\right)^2+\left(2b+1\right)^2\)
c) \(4x^2+4x+10+6y+y^2=4x^2+4x+1+y^2+6y+9\)
= \(\left(2x+1\right)^2+\left(y+3\right)^2\)
a, \(x^2+10x+26+y^2+2y\)
= \(x^2+10x+25+1+y^2+2y\)
= \((x^2+10x+25)+(y^2+2y+1)\)
= \(\left(x+5\right)^2+(y+1)^2\)
b, \(a^2+5b^2+2ab+4b+1\)
= \(a^2+4b^2+b^2+2ab+4b+1\)
= \((a^2+2ab+b^2)+(4b^2+4b+1)\)
= \((a+b)^2+(2b+1)^2\)
c,\(4x^2+4x+10+6y+y^2\)
= \(4x^2+4x+9+1+6y+y^2\)
= \((4x^2+4x+1)+(y^2+6y+9)\)
= \((2x+1)^2+(y+3)^2\)