Dễ thấy: \(4^{1870^{2016}}⋮4\Rightarrow22^{4^{1870^{2016}}}=\left(...6\right)\left(1\right)\)
\(5\equiv1\left(mod4\right)\Rightarrow5^{1890^{2016}}\equiv1\left(mod4\right)\)
\(\Rightarrow19^{5^{1890^{2016}}}=19^{4k+1}\) (k ϵ N*)
\(=19^{4k}.19=\left(19^4\right)^k.19=\left(...1\right)^k.19=\left(...1\right).19=\left(...9\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow22^{4^{1870^{2016}}}+19^{5^{1890^{2016}}}=\left(...6\right)+\left(...9\right)=\left(...5\right)\)