Lời giải:
$A(x)=(x^2-2x+3)(\frac{1}{2}x-5)=\frac{x^3}{2}-6x^2+\frac{23}{2}x-15$
Từ đây ta thấy hệ số $x$ của $A(x)$ là $\frac{23}{2}$
Lời giải:
$A(x)=(x^2-2x+3)(\frac{1}{2}x-5)=\frac{x^3}{2}-6x^2+\frac{23}{2}x-15$
Từ đây ta thấy hệ số $x$ của $A(x)$ là $\frac{23}{2}$
bài 5: cho biểu thức A=\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
a. Tìm điều kiện của biến x để giá trị của biểu thức A được xác định ?
b. Tìm giá trị của x để A=1;A=-3
bài 6:cho phân thức A=\(\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\left(x\ne5;x\ne-5\right)\)
a. Rút gọn A
b. cho A=-3. Tính giá trị của biểu thức 9x2-42x+49
Cho biểu thức
A=\(\left[\frac{3\left(x+2\right)}{2\left(x^3+x^2+x+1\right)}+\frac{2x^2-x-10}{2\left(x^3-x^2+x-1\right)}\right]:\left[\frac{5}{x^2+1}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x+1\right)}\right]\)
Giải các phương trình sau
a) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
b) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
c) \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)
d) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
e) \(\frac{1}{x-2}+\frac{5}{x+1}=\frac{3}{2-x}\)
f) \(\frac{5x}{2x+2}+1=-\frac{6}{x+1}\)
g) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)
h) \(\frac{3x}{x-2}-\frac{x}{x-5}=\frac{3x}{\left(x-2\right)\left(5-x\right)}\)
1. a, tính gt nhỏ nhất của biểu thức
A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b, tính gt lớn nhất của biểu thúc
B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
2. cho bt Q=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
Tìm các số A , B , C để có
a) \(\frac{x^2-x+2}{\left(x-1\right)^3}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}\)
b) \(\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}\)
a, (x-1)3 - x(x-1)2 = 5(2-x) - 11(x+2)
b, (x-2)3 + (3x-1)(3x+1) = (x+1)3
c, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)
d, \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)
e, \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
xác định các số hữu tỉ a,b,c,d sao cho:
a,\(\frac{1}{x\left(x+1\right)\left(x+2\right)}=\frac{a}{x\left(x+1\right)}+\frac{b}{\left(x+1\right)\left(x+2\right)}\)
b,\(\frac{x^3}{x^4-1}=\frac{a}{x-1}+\frac{b}{x+1}+\frac{cx+d}{x^2+1}\)
c,\(\frac{2x^2-x+1}{\left(x+1\right)\left(x-2\right)^2}=\frac{a}{x+1}+\frac{b}{x-2}+\frac{c}{x-2}\)
\(A=\left\{\frac{3}{2x+4}+\frac{x}{2-x}+\frac{2x^2+3}{x^2-4}\right\}:\left\{\frac{2x-1}{4x-8}\right\}\)
a.rút gọn A
b. tìm x để A < 2
c. tính gí trị của A biết | x-1 | = 3
d. tìm x để |A| =1
Giải các bất phương trình sau :
a) \(15-2x\left(1-x\right)< 2x^2-4x+5\)
b) \(x^2-\frac{x\left(3x+2\right)}{3}< \frac{x-6}{3}\)
c) \(1+\frac{x+4}{3}< x-\frac{x-3}{2}\)
d) \(\left(\frac{2x+1}{2}\right)^2+\frac{3x\left(1-x\right)}{3}-\frac{5x}{4}\le1\)