Một vật nhỏ dao động điều hòa dọc theo trục Ox (vị trí cân bằng ở O) với biên độ 4 cm và tần số 10 Hz. Tại thời điểm t = 0, vật có li độ 4 cm. Phương trình dao động của vật là A.x = 4cos(20 π t + π ) cm. B.x = 4cos20 π t cm. C.x = 4cos(20 π t – 0,5 π ) cm. D.x = 4cos(20 π t + 0,5 π ) cm.
Một con lắc lò xo gồm lò xo nhẹ có độ cứng 100 N/m và vật nhỏ khối lượng m. Con lắc dao động điều hòa với chu kì T với biên độ 10 cm. Biết ở thời điểm t vật ở vị trí M. Ở thời điểm t + \(\dfrac{5T}{6}\), vật lại ở vị trí M nhưng đi theo chiều ngược lại. Động năng của vật khi nó ở M là:
Một vật dao động điều hòa có dạng hàm cos với biên độ bằng 6cm. Vận tốc vật khi pha dao động là \(\dfrac{\pi}{6}\) là -60 cm/s. Tính chu kì của dao động?
Một vật dao động điều hòa có chu kỳ 2 (s) và biên độ 10 cm. Khi vật cách vị trí cân bằng 5 cm, tốc độ của nó bằng bao nhiêu ?
Một vật dao động điều hòa với tần số góc 10π rad/s và biên độ √2 cm. Khi vật có vận tốc 10√10 cm/s thì gia tốc của nó có độ lớn bằng : A. 4m/s^2 B. 10m/s^2 C. 2m/s^2 D. 5m/s^2
Một con lắc lò xo treo thẳng đứng gồm lò xo có độ cứng k = 50N/m và vật có khối lượng m (g) dao động điều hòa theo phương thẳng đứng với li độ \(x=10\cos\left(5\pi t+\dfrac{\pi}{2}\right)\left(cm\right)\) biết g = 10 m/s2.
a) Tính khối lượng của vật và chu kỳ của con lắc
b) Tính thế năng, động năng và cơ năng của con lắc khi vật ở li độ x = 2 cm
c) Tính lực đàn hội của lò xo khi vật nặng có \(v=\dfrac{1}{2}v_{max}\)
Một dao động điều hòa mà 3 thỏi điểm liên tiếp t1, t2, t3 với t3-t1=3.(t3-t2) li độ có giá trị là -x1=x2=x3=\(3\sqrt{3}\) cm. Thời điểm t1 vật đi theo chiều dương. Tính biên độ của dao động
Một vật dao động điều hoà tần số 2Hz, biên độ A=5cm. Lấy π2=10. Khi vận tốc của vật có độ lớn là 16π cm/s thì gia tốc của vật có độ lớn là:
Phương trình dao động của một vật dao động điều hòa có dạng : \(x=6sin\left(10\pi t+\pi\right)\left(cm\right)\) . Tính li độ của vật khi pha dao động bằng (\(-60^o\)).