Một vật có khối lượng m trượt từ đinh mp nghiêng với vận tốc đầu là 4m / s , biết mp nghiêng dài 50m và nghiêng một góc 30° so với phương ngang , cho hệ số ma sát H = 0 , 05 Lấy g = 10m s
a ) Tìm vận tốc tại điểm giữa của mp nghiêng .
b ) Tìm vận chân mp nghiêng
c ) Tìm quãng đường từ đinh mp nghiêng cho đến khi vật có vận tốc 10m / s
Giải:
Hệ quy chiếu: O là đỉnh mpn
Ox cùng phương với mpn
Oy vuông góc với mpn
Chiều dương là chiều cđ ban đầu của vật, gốc thời gian là lúc bắt đầu chuyển động trên mpn.
Các lực tác dụng lên vật là: Lực ma sát \(\overrightarrow{F_{ms}}\), phản lực \(\overrightarrow{N}\) của mpn, và trọng lực \(\overrightarrow{P}\)được phân tích thành 2 lực thành phần là \(\overrightarrow{P_x},\overrightarrow{P_y}\) (Px có phương song song với mpn)
a) Theo định luật II Niu-tơn ta có:
\(\overrightarrow{F_{ms}}+\overrightarrow{N}+\overrightarrow{P}=m.\overrightarrow{a}\left(1\right)\)
Chiếu (1) lên Ox: \(P_x-F_{ms}=m.a\left(2\right)\)
Chiếu (1) lên Oy: \(P_y-N=0\) (3)
Suy ra, gia tốc của vật trên mpn là:
\(a=\dfrac{P_x-F_{ms}}{m}=\dfrac{P.sin\alpha-k.N}{m}=\dfrac{Psin\alpha-k.P_y}{m}=\dfrac{m.g.sin\alpha-km.g.cos\alpha}{m}=10.sin30^o-0,05.10.cos30^o\approx4,6\left(m/s^2\right)\)
Vận tốc tại điểm giữa mpn là:
\(v_{giữa}^2-v_0^2=\dfrac{2.a.s}{2}\Rightarrow v_{giữa}=\sqrt{a.s+v_0^2}=\sqrt{4,6.50+4^2}\approx15,7\left(m/s\right)\)
b) Vận tốc ở chân mpn là:
\(v_{chân}^2-v_0^2=2.a.s\Rightarrow v_{chân}=\sqrt{2.a.s+v_0^2}=\sqrt{2.4,6.50+4^2}=21,8\left(m/s\right)\)
c) Quãng đường từ đỉnh mpn đến khi vật có vận tốc 10m/s là:
\(v'^2-v_0^2=2.a.s'\Rightarrow s'=\dfrac{v'^2-v_0^2}{2.a}=\dfrac{10^2-4^2}{2.4,6}\approx9,13\left(m\right)\)
Vậy:...