\(s_2-s_1=40\Leftrightarrow s-s_1-s_1=40\Leftrightarrow s-2s_1=40\)
\(\Rightarrow\dfrac{1}{2}gt^2-2\cdot\dfrac{1}{2}gt_1^2=40\)
Mà: \(t_1=\dfrac{1}{2}t\Rightarrow\dfrac{1}{2}gt^2-2\cdot\dfrac{1}{2}g\left(\dfrac{1}{2}t\right)^2=40\)
\(\Leftrightarrow\dfrac{1}{4}gt^2=40\Leftrightarrow t=\sqrt{\dfrac{40}{\dfrac{1}{4}g}}=\sqrt{\dfrac{40}{\dfrac{1}{4}\cdot10}}=4\left(s\right)\)
\(\Rightarrow\left\{{}\begin{matrix}h=s=\dfrac{1}{2}gt^2=\dfrac{1}{2}\cdot10\cdot4^2=80\left(m\right)\\v=gt=10\cdot4=40\left(m/s\right)\end{matrix}\right.\)
Vậy: h = 80 (m), t = 4 (s) và v = 40 (m/s).