Rải
Ta có:
\(V_{tb}=\dfrac{S_{AB}+S_{BC}}{t_1+t_2}=\dfrac{v_1.t_1+v_2.t_2}{t_1+t_2}\left(1\right)\)
\(V_{tb}=\dfrac{v_1+v_2}{2}\left(2\right)\)
Từ (1) và (2)<=>\(\dfrac{v_1+v_2}{2}=\dfrac{v_1t_1+v_2t_2}{t_1+t_2}\)
<=>\(\left(v_1+v_2\right)\left(t_1+t_2\right)=2v_1.t_1+2v_2.t_2\)
<=>\(v_1.t_1+v_1.t_2+v_2.t_1+v_2.t_2=2v_1.t_1+2v_2.t_2\)
<=>\(v_1.t_2+v_2.t_1=v_1.t_1+v_2.t_2\)
<=>\(t_2\left(v_1-v_2\right)=t_1\left(v_1-v_2\right)\)
<=>\(t_2=t_1.\)
Vậy \(t_1=t_2\).